
Intelligent Agents

Chapter 2

Chapter 2 1

Reminders

Assignment 0 (lisp refresher) due 9/8
account forms from 727 Soda.

Lisp/emacs tutorial: 10-12 and 3.30-4.30 on Fri 9/2, 273 Soda

My office hours on Tuesday moved to 4.30-5.30

Section swapping proposal
Blaine to teach 106 (Wed 4-5) instead of 104 (Wed 12-1)
John to teach 104 (Wed 12-1) instead of 106 (Wed 4-5)
⇒ non-CS students in 104 switch to 106

Chapter 2 2

Outline

♦ Agents and environments

♦ Rationality

♦ PEAS (Performance measure, Environment, Actuators, Sensors)

♦ Environment types

♦ Agent types

Chapter 2 3

Agents and environments

Agent Sensors

Actuators

E
nvironm

ent

Percepts

Actions

?

Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

f : P∗ → A

The agent program runs on the physical architecture to produce f

Chapter 2 4

Vacuum-cleaner world

A B

Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

Chapter 2 5

A vacuum-cleaner agent

Percept sequence Action
[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Left

[B, Dirty] Suck

[A, Clean], [A, Clean] Right

[A, Clean], [A, Dirty] Suck
... ...

function Reflex-Vacuum-Agent([location,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

What is the right function?
Can it be implemented in a small agent program?

Chapter 2 6

Rationality

Fixed performance measure evaluates the environment sequence
– one point per square cleaned up in time T ? WYAFIWYG
– one point per clean square per time step, minus one per move?
– penalize for > k dirty squares?

A rational agent chooses whichever action maximizes the expected value of
the performance measure given the percept sequence to date

Rational 6= omniscient
– percepts may not supply all relevant information

Rational 6= clairvoyant
– action outcomes may not be as expected

Hence, rational 6= successful

Rational ⇒ exploration, learning, autonomy

Chapter 2 7

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure??

Environment??

Actuators??

Sensors??

Chapter 2 8

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure?? safety, destination, profits, legality, comfort, . . .

Environment?? US streets/freeways, traffic, pedestrians, weather, . . .

Actuators?? steering, accelerator, brake, horn, speaker/display, . . .

Sensors?? video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .

Chapter 2 9

Internet shopping agent

Performance measure??

Environment??

Actuators??

Sensors??

Chapter 2 10

Internet shopping agent

Performance measure?? price, quality, appropriateness, efficiency

Environment?? current and future WWW sites, vendors, shippers

Actuators?? display to user, follow URL, fill in form

Sensors?? HTML pages (text, graphics, scripts)

Chapter 2 11

Environment types

Peg Solitaire Backgammon Internet shopping Taxi
Observable??
Deterministic??
Episodic??
Static??
Discrete??
Single-agent??

Chapter 2 12

Environment types

Peg Solitaire Backgammon Internet shopping Taxi
Observable?? Yes Yes No No
Deterministic??
Episodic??
Static??
Discrete??
Single-agent??

Chapter 2 13

Environment types

Peg Solitaire Backgammon Internet shopping Taxi
Observable?? Yes Yes No No
Deterministic?? Yes No Partly No
Episodic??
Static??
Discrete??
Single-agent??

Chapter 2 14

Environment types

Peg Solitaire Backgammon Internet shopping Taxi
Observable?? Yes Yes No No
Deterministic?? Yes No Partly No
Episodic?? No No No No
Static??
Discrete??
Single-agent??

Chapter 2 15

Environment types

Peg Solitaire Backgammon Internet shopping Taxi
Observable?? Yes Yes No No
Deterministic?? Yes No Partly No
Episodic?? No No No No
Static?? Yes Semi Semi No
Discrete??
Single-agent??

Chapter 2 16

Environment types

Peg Solitaire Backgammon Internet shopping Taxi
Observable?? Yes Yes No No
Deterministic?? Yes No Partly No
Episodic?? No No No No
Static?? Yes Semi Semi No
Discrete?? Yes Yes Yes No
Single-agent??

Chapter 2 17

Environment types

Peg Solitaire Backgammon Internet shopping Taxi
Observable?? Yes Yes No No
Deterministic?? Yes No Partly No
Episodic?? No No No No
Static?? Yes Semi Semi No
Discrete?? Yes Yes Yes No
Single-agent?? Yes No Yes (except auctions) No

The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic, sequential,
dynamic, continuous, multi-agent

Chapter 2 18

Agent types

Four basic types in order of increasing generality:
– simple reflex agents
– reflex agents with state
– goal-based agents
– utility-based agents

All these can be turned into learning agents

Chapter 2 19

Simple reflex agents

Agent
E

nvironm
ent

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Chapter 2 20

Example

function Reflex-Vacuum-Agent([location,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

(setq joe (make-agent :body (make-agent-body)

:program

#’(lambda (percept)

(destructuring-bind (location status) percept

(cond ((eq status ’Dirty) ’Suck)

((eq location ’A) ’Right)

((eq location ’B) ’Left))))))

Chapter 2 21

Problems with simple reflex agents

Simple reflex agents fail in partially observable environments

E.g., suppose location sensor is missing

Agent (presumably) Sucks if Dirty; what if Clean?
⇒ infinite loops are unavoidable

Randomization helps (why??), but not that much

Chapter 2 22

Reflex agents with state

Agent

E
nvironm

ent
Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Chapter 2 23

Example

function Reflex-Vacuum-Agent([location,status]) returns an action

static: last A, last B, numbers, initially ∞

if status = Dirty then . . .

:program

(let ((last-A infinity) (last-B infinity))

(defun reflex-vacuum-agent-with-state (percept)

(destructuring-bind (location status) percept

(incf last-A) (incf last-B)

(cond

((eq status ’Dirty)

(if (eq location ’A) (setq last-A 0) (setq last-B 0))

’Suck)

((eq location ’A) (if (> last-B 3) ’Right ’NoOp))

((eq location ’B) (if (> last-A 3) ’Left ’NoOp)))))

#’reflex-vacuum-agent-with-state)

Chapter 2 24

Goal-based agents

Agent

E
nvironm

ent
Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
 if I do action A

Goals

Chapter 2 25

Utility-based agents

Agent

E
nvironm

ent
Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Chapter 2 26

Summary

Agents interact with environments through actuators and sensors

The agent function describes what the agent does in all circumstances

The performance measure evaluates the environment sequence

A perfectly rational agent maximizes expected performance

Agent programs implement (some) agent functions

PEAS descriptions define task environments

Environments are categorized along several dimensions:
observable? deterministic? episodic? static? discrete? single-agent?

Several basic agent architectures exist:
reflex, reflex with state, goal-based, utility-based

Chapter 2 27

