Chapter 11: Planning

m The Planning problem
m Planning with State-space search
m Partial-order planning



What is Planning

m Generate sequences of actions to perform tasks and

achieve objectives.
States, actions and goals

m Search for solution over abstract space of plans.

m Assists humans 1n practical applications
design and manufacturing
military operations
games
space exploration



Difficulty of real world problems

m Assume a problem-solving agent

using some search method ...
Which actions are relevant?

m Exhaustive search vs. backward search
What is a good heuristic functions?

m Good estimate of the cost of the state?

m Problem-dependent vs, -independent
How to decompose the problem?

m Most real-world problems are nearly decomposable.



Planning language

m What 1s a good language?

Expressive enough to describe a wide variety of
problems.

Restrictive enough to allow efficient algorithms to
operate on it.

Planning algorithm should be able to take
advantage of the logical structure of the problem.

m STRIPS and ADL



General language features

m Representation of states

Decompose the world in logical conditions and represent
a state as a conjunction of positive literals.

m Propositional literals: Poor A Unknown

m FO-literals (grounded and function-free): A¢(Planel, Melbourne) A
At(Plane2, Sydney)

Closed world assumption

m Representation of goals

Partially specified state and represented as a conjunction
of positive ground literals

A goal is satisfied if the state contains all literals in goal.



General language features

m Representations of actions
Action = PRECOND + EFFECT
Action(Fly(p,from, to),
PRECOND: At(p,from) A Plane(p) A Airport(from) A Airport(to)

EFFECT: =AT(p,from) A At(p,to))
= action schema (p, from, to need to be instantiated)

m Action name and parameter list
m Precondition (conj. of function-free literals)

m Effect (conj of function-free literals and P is True and not P is
false)

Add-list vs delete-list in Effect



Language semantics?

m How do actions affect states?

An action is applicable in any state that satisfies
the precondition.

For FO action schema applicability involves a
substitution O for the variables in the PRECOND.

At(P1,JFK) A At(P2,SFO) A Plane(P1) A Plane(P2) A Airport(JFK)
A Airport(SFO)

Satisfies : At(p,from) A Plane(p) A Airport(from) A Airport(to)

With O ={p/P1.from/JFK,t0/SFO}
Thus the action 1s applicable.



Language semantics?

m The result of executing action a in state s 1s the state s’
s’ is same as s except
m Any positive literal P in the effect of a 1s added to s’
m Any negative literal =P is removed from s’

At(P1,SFO) A At(P2,SFO) A Plane(P1) A Plane(P2) A Airport(JFK) A
Airport(SFO)

STRIPS assumption: (avoids representational frame
problem)

every literal NOT in the effect remains unchanged



Expressiveness and extensions

m STRIPS 1s simplified

Important limit: function-free literals
Allows for propositional representation
m Function symbols lead to infinitely many states and
actions

m Recent extension:Action Description language (ADL)
Action(Fly(p:Plane, from: Airport, to: Airport),
PRECOND: At(p,from) A (from #to)
EFFECT: -At(p,from) A At(p,to))

Standardization : Planning domain definition language (PDDL)



Example: air cargo transport

Init(At(C1, SFO) A At(C2,JFK) A At(P1,SFO) A At(P2,JFK) A Cargo(C1) A Cargo(C2) A
Plane(P1) A Plane(P2) A Airport(JFK) A Airport(SFO))

Goal(A{(C1,JFK) AAt(C2,SFO))

Action(Load(c,p,a)
PRECOND: At(c,a) AAt(p,a) nCargo(c) nPlane(p) AAirport(a)
EFFECT: —Af(c,a) nln(c,p))

Action(Unload(c,p,a)
PRECOND: In(c,p) AAt(p,a) ACargo(c) APlane(p) AAirport(a)
EFFECT: At(c,a) A =In(c,p))

Action(Fly(p,from,to)
PRECOND: At(p,from) APlane(p) AAirport(from) AAirport(to)
EFFECT: = At(p,from) A At(p,to))

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK), Fly(P2,JFK,SFO)]

10



Example: Spare tire problem

Init(At(Flat, Axle) A At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: —At(Spare, Trunk) »n At(Spare,Ground))
Action(Remove(Flat,Axle)

PRECOND: Af(Flat,Axle)

EFFECT: —At(Flat,Axle) n At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) A—At(Flat,Axle)

EFFECT: At(Spare,Axle) A ~Ar(Spare,Ground))
Action(LeaveOvernight

PRECOND:
EFFECT: = At(Spare,Ground) » = At(Spare,Axle) A = At(Spare,trunk) A = At(Flat,Ground) A —
At(Flat,Axle) )

This example goes beyond STRIPS: negative literal in pre-condition (ADL description)



Example: Blocks world

Init(On(A, Table) A On(B,Table) A On(C,Table) A Block(A) A Block(B) A Block(C) A Clear(A) A
Clear(B) A Clear(C))

Goal(On(A,B) A On(B,C))
Action(Move(b,x,y)
PRECOND: On(b,x) n Clear(b) A Clear(y) A Block(b) A (b#x) A (b#Y) A (xZY)
EFFECT: On(b,y) A Clear(x) A = On(b,x) A = Clear(y))
Action(MoveToTable(b,x)
PRECOND: On(b,x) A Clear(b) A Block(b) A (b#Xx)
EFFECT: On(b,Table) A Clear(x) A = On(b,x))

Spurious actions are possible: Move(B,C,C)

12



Planning with state-space search

m Both forward and backward search possible

m Progression planners
forward state-space search
Consider the effect of all possible actions in a given state

m Regression planners
backward state-space search

To achieve a goal, what must have been true in the
previous state.

13



Progression and regression

AP, A)
oy
& At(P, . Al
-~ AP,
At(F, ,
- : (P,
ib) i
"“'--...___ J AffP1 )
.-qfl'rPa El
.-."Hl'x_ _ )

S

Al
E)

E)
Al

At(P,
FyP AB) | AlP
Fly(F, .A.E) — Ai!‘rrP1
At(P,
T FNR AB) il
H-
Fly(P, A B)

. B
Al

Al
. B

At(P, . B)
At(F, , B)

JANVAN

14



Progression algorithm

m Formulation as state-space search problem:
Initial state = initial state of the planning problem

m Literals not appearing are false
Actions = those whose preconditions are satisfied

m Add positive effects, delete negative
Goal test = does the state satisfy the goal
Step cost = each action costs 1

m No functions ... any graph search that is complete is a
complete planning algorithm.

m Inefficient: (1) irrelevant action problem (2) good
heuristic required for efficient search

15



Regression algorithm

m How to determine predecessors?

What are the states from which applying a given action
leads to the goal?

Goal state = A{(C1, B) NA{(C2, B) A ... AAK(C20, B)

Relevant action for first conjunct: Unload(C1,p,B)

Works only if pre-conditions are satisfied.

Previous state= In(C1, p) A At(p, B) AA{C2, B) A ... AAHC20, B)
Subgoal At(C1,B) should not be present in this state.

m Actions must not undo desired literals (consistent)

m Main advantage: only relevant actions are considered.
Often much lower branching factor than forward search.

16



Regression algorithm

m General process for predecessor construction
Give a goal description G
Let A be an action that is relevant and consistent
The predecessors is as follows:

m Any positive effects of A that appear in G are deleted.
m Each precondition literal of A is added , unless it already appears.

®m Any standard search algorithm can be added to perform
the search.

m Termination when predecessor satisfied by initial state.
In FO case, satisfaction might require a substitution.

17



Heuristics for state-space search

m Neither progression or regression are very efficient

without a good heuristic.
How many actions are needed to achieve the goal?
Exact solution is NP hard, find a good estimate

m Two approaches to find admissible heuristic:
The optimal solution to the relaxed problem.

m Remove all preconditions from actions
The subgoal independence assumption:

The cost of solving a conjunction of subgoals is approximated by the
sum of the costs of solving the subproblems independently.

18



Partial-Order Planning (POP)

m Progression and regression planning are fotally

ordered plan search forms.

They cannot take advantage of problem
decomposition.

m Decisions must be made on how to sequence actions on
all the subproblems

m [ east commitment strategy:
Delay choice during search

19



Shoe example

Goal(RightShoeOn A LeftShoeOn)

Init()

Action(RightShoe, PRECOND: RightSockOn
EFFECT: RightShoeOn)

Action(RightSock, PRECOND:
EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn
EFFECT: LeftShoeOn)

Action(LeftSock, PRECOND:
EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock, leftshoe
(2)rightsock, rightshoe

20



Partial-order planning

® Any planning algorithm that can place two actions into a
plan without which comes first is a POP.

Partial Onder Plan: Total Order Plans:
Start Start Start Start Start Start Start
/ \ Right Right Left Laft Right Left
e _RLQF Sock Sock Sock Sock Sock Sock
Sock Sock + L * * * *
Laft Left Right Right Right Left
Sock Sock Sock Sock Shaos Shosa
LeftSockin RightSockOn * + * * * +
x Right Laft Right Laft Left Right
Left Right
Shos Shos Sl'ra Shos Sh*na 5 109 Sﬂfk 5'3+Ek
Laft Right Laft Right Left Right
Shos Shoa Shoa Shos Shos Shos
Le#ShoeOn, RightShoeCn * i. * * + *
Finizh Finish Finish Finish Finish Finigh Finigh




POP as a search problem

m States are (mostly unfinished) plans.
The empty plan contains only start and finish actions.

m Each plan has 4 components:
A set of actions (steps of the plan)
A set of ordering constraints: A< B

m Cycles represent contradictions.
A set of causal links A —2 > B

m The plan may not be extended by adding a new action C that
conflicts with the causal link. (if the effect of C is =p and if C could
come after A and before B)

A set of open preconditions.
m If precondition is not achieved by action in the plan.

22



POP as a search problem

m A plan is consistent it there are no cycles in the ordering
constraints and no conflicts with the causal links.

m A consistent plan with no open preconditions is a
solution.

m A partial order plan 1s executed by repeatedly choosing

any of the possible next actions.

This flexibility is a benefit in non-cooperative
environments.

23



Solving POP

B Assume propositional planning problems:

The initial plan contains Start and Finish, the
ordering constraint Start < Finish, no causal links,
all the preconditions in Finish are open.

Successor function :
m picks one open precondition p on an action B and

m generates a successor plan for every possible consistent
way of choosing action A that achieves p.

Test goal

24



Enforcing consistency

B When generating successor plan:

The causal link A--p->B and the ordering constraing
A < B is added to the plan.
m If A is new also add start < A and A < B to the plan

Resolve conflicts between new causal link and all
existing actions

Resolve conflicts between action A (if new) and all
existing causal links.

25



Process summary

m Operators on partial plans

Add link from existing plan to open precondition.
Add a step to fulfill an open condition.

Order one step w.r.t another to remove possible
conflicts

®m Gradually move from incomplete/vague plans to
complete/correct plans

m Backtrack if an open condition 1s unachievable or
1f a contlict 1s unresolvable.

26



Example: Spare tire problem

Init(At(Flat, Axle) A At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: =At(Spare, Trunk) A At(Spare,Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: -At(Flat,Axle) A At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: A¢(Spare,Groundp) An—At(Flat,Axle)

EFFECT: At(Spare,Axle) A ~Ar(Spare,Ground))
Action(LeaveOvernight

PRECOND:
EFFECT: = At(Spare,Ground) A = At(Spare,Axle) A = At(Spare,trunk) n = At(Flat,Ground)
A At(Flat,Axle) )

27



Solving the problem

AnfSpare Trurk)

Remowve (Spare. Trunk)

AT  Trunk
[(Start iarete Lo
ArfFlar, Aucke)

\

ArfSpzre. Ground)
ARz Axie)

PutOni Spare Axle)

e AN Sp2re Axlel

m Intial plan: Start with EFFECTS and Finish with

PRECOND.

Finish

28




Solving the problem

AnSozre Trunk)| Remowe (Spare, Trunk) \

—

..l  Trumk 5 - . .
[ Start |ﬂ": i A G e Spare Axle) |- A Soare Asizl] Yinish

rfFla. Aulke) ARz Axie) /

Intial plan: Start with EFFECTS and Finish with PRECOND.
Pick an open precondition: A¢(Spare, Axle)

Only PutOn(Spare, Axle) 1s applicable

Add causal link:  PutOn(Spare, Axle) —22e2) s Finish
Add constraint : PutOn(Spare, Axle) < Finish

29



Solving the problem

Ar.'me.'."rw@e[ﬁ:-ara.ﬂunm \
=t _Tr1'_|,|-' ) - ..
[ Start |": i AN S Gl el Spare Axle) |- AfSaare Asigl|  Finish
ArfFlar, Aucke) T1AfAIT A ) :

Pick an open precondition: At(Spare, Ground)

Only Remove(Spare, Trunk) 1s applicable
Add causal link: Remove(Spare, Trunk)—2222280wd) s putOn(Spare, Axle)

Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

30



Solving the problem

.lqrff-:ﬂ.J'E.Trl..'li-:_,ll Remowe (Spare, Trunk) \

T Mt i Ay o 5 0P|

Ar il Ak ) ARz Axl=)

1A AzrAxl=)
1A Rz Greung)

|_ L eawve Che tnig bt hﬂw%rzﬂxlq

AN Gozre, Ge i)
AN So=re. T

Pick an open precondition: At(Spare, Ground)
LeaveOverNight 1s applicable
conflict: Remove(Spare, Trunk) At(Opare.Ground ) > PutOn(Spare, Axle)

To resolve, add constraint : LeaveOverNight < Remove(Spare,
Trunk)

31



Solving the problem

.lqrff-:ﬂ.J'E.Trl..'li-:_,ll Remowe (Spare, Trunk) \

T Mt i Ay o 5 0P|

Ar il Ak ) ARz Axl=)

1A AzrAxl=)

- 1A Rz Greung)

|_LE'.EI'I."'E'C|'I."IE'T|'Ilg|TI' 1A Soare Acie)
AN Gozre, Ge i)
AN So=re. T

Pick an open precondition: At(Spare, Ground)
LeaveOverNight is applicable
conflict: Remove(Spare, Trunk) —2222ewd) s pyrOn(Spare, Axle)

To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)

Add causal link:
LeaveOverNight—21aeSromnd) s pyrOn(Spare, Axle)

32



Solving the problem

.lqrff-:ﬂ.J'E.Trl..'li-:_,ll h@-mnm[&:arB.Trunh‘l \

ArfS , Trunk AnS Growurd) —
BT e e e PutOn( Spare Axle) |- ArSawre.Ade_ Finish |

Ar il Ak ) ARz Axl=)

1A AzrAxl=)
1A Rz Greung)

|_ L eawve Che tnig bt hﬂw%rzﬂxlq

AN Gozre, Ge g

AN Soze, Tnerk)

Pick an open precondition: At#(Spare, Trunk)

Only Start 1s applicable

Add causal link: Start —21oareTnnt) pe move(Spare,Trunk)

Conflict: of causal link with effect A#(Spare, Trunk) in LeaveOverNight
No re-ordering solution possible.

m backtrack

33



Solving the problem

Aw?:’mﬂq Flern-:-w[Eq:-ara.TrunHl—\

At fSoare Trunk AnS JGround
[ Start : N o o O Spare Axke) et A Fpare Asle)
ArfFlar, Aicke) ARz Axie)

ﬂrrﬂ.:.-fltle,ll Remowvel Flat, Axla) /

Finish

m Remove LeaveOverNight, Remove(Spare, Trunk) and causal

links
m Repeat step with Remove(Spare, Trunk)
m Add also RemoveFlatAxle and finish

34




Some details ...

m What happens when a first-order representation that
includes variables 1s used?

Complicates the process of detecting and resolving
conflicts.

Can be resolved by introducing inequality
constrainst.

m CSP’s most-constrained-variable constraint can be used
for planning algorithms to select a PRECOND.

35



Conclusion

®m Planning 1s an area of great interest within Al

Search for solution
Constructively prove a existence of solution

m Biggest problem is the combinatorial explosion in states

m Efficient methods are under research
E.g. divide-and-conquer

36



