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Chapter 11: Planning

� The Planning problem

� Planning with State-space search

� Partial-order planning
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What is Planning

� Generate sequences of actions to perform tasks and 

achieve objectives.
� States, actions and goals

� Search for solution over abstract space of plans.

� Assists humans in practical applications
� design and manufacturing

� military operations

� games

� space exploration
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Difficulty of real world problems

� Assume a problem-solving agent

using some search method …
� Which actions are relevant?

� Exhaustive search vs. backward search

� What is a good heuristic functions?

� Good estimate of the cost of the state?

� Problem-dependent vs, -independent

� How to decompose the problem?

� Most real-world problems are nearly decomposable.
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Planning language

� What is a good language?
� Expressive enough to describe a wide variety of 
problems.

� Restrictive enough to allow efficient algorithms to 
operate on it.

� Planning algorithm should be able to take 
advantage of the logical structure of the problem.

� STRIPS and ADL
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General language features

� Representation of states
� Decompose the world in logical conditions and represent 
a state as a conjunction of positive literals. 

� Propositional literals: Poor ∧ Unknown

� FO-literals (grounded and function-free): At(Plane1, Melbourne) ∧
At(Plane2, Sydney)

� Closed world assumption

� Representation of goals
� Partially specified state and represented as a conjunction 
of positive ground literals

� A goal is satisfied if the state contains all literals in goal.
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General language features

� Representations of actions
� Action = PRECOND + EFFECT

Action(Fly(p,from, to),

PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

EFFECT: ¬AT(p,from) ∧ At(p,to))

= action schema (p, from, to need to be instantiated)

� Action name and parameter list

� Precondition (conj. of function-free literals)

� Effect (conj of function-free literals and P is True and not P is 
false)

� Add-list vs delete-list in Effect
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Language semantics?

� How do actions affect states?
� An action is applicable in any state that satisfies 
the precondition.

� For FO action schema applicability involves a 

substitution θ for the variables in the PRECOND.

At(P1,JFK) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) 
∧ Airport(SFO)

Satisfies : At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

With θ ={p/P1,from/JFK,to/SFO}

Thus the action is applicable.
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Language semantics?

� The result of executing action a in state s is the state s’ 
� s’ is same as s except

� Any positive literal P in the effect of a is added to s’

� Any negative literal ¬P is removed from s’

At(P1,SFO) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧
Airport(SFO)

� STRIPS assumption: (avoids representational frame 
problem)

every literal NOT in the effect remains unchanged
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Expressiveness and extensions

� STRIPS is simplified  
� Important limit: function-free literals

� Allows for propositional representation

� Function symbols lead to infinitely many states and 
actions

� Recent extension:Action Description language (ADL)
Action(Fly(p:Plane, from: Airport, to: Airport),

PRECOND: At(p,from) ∧ (from ≠ to)

EFFECT: ¬At(p,from) ∧ At(p,to))

Standardization : Planning domain definition language (PDDL)
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Example: air cargo transport

Init(At(C1, SFO) ∧ At(C2,JFK) ∧ At(P1,SFO) ∧ At(P2,JFK) ∧ Cargo(C1) ∧ Cargo(C2) ∧
Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO))

Goal(At(C1,JFK) ∧ At(C2,SFO))

Action(Load(c,p,a)

PRECOND: At(c,a) ∧At(p,a) ∧Cargo(c) ∧Plane(p) ∧Airport(a)

EFFECT: ¬At(c,a) ∧In(c,p))

Action(Unload(c,p,a)

PRECOND: In(c,p) ∧At(p,a) ∧Cargo(c) ∧Plane(p) ∧Airport(a)

EFFECT: At(c,a) ∧ ¬In(c,p))

Action(Fly(p,from,to)

PRECOND: At(p,from) ∧Plane(p) ∧Airport(from) ∧Airport(to)

EFFECT: ¬ At(p,from) ∧ At(p,to))

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK), Fly(P2,JFK,SFO)]
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Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare,trunk))

Goal(At(Spare,Axle))

Action(Remove(Spare,Trunk)

PRECOND: At(Spare,Trunk)

EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)

EFFECT: At(Spare,Axle) ∧ ¬Ar(Spare,Ground))

Action(LeaveOvernight

PRECOND:

EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk) ∧ ¬ At(Flat,Ground) ∧ ¬
At(Flat,Axle) )

This example goes beyond STRIPS: negative literal in pre-condition (ADL description)
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Example: Blocks world

Init(On(A, Table) ∧ On(B,Table) ∧ On(C,Table) ∧ Block(A) ∧ Block(B) ∧ Block(C) ∧ Clear(A) ∧
Clear(B) ∧ Clear(C))

Goal(On(A,B) ∧ On(B,C))

Action(Move(b,x,y)

PRECOND: On(b,x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ (b≠ x) ∧ (b≠ y) ∧ (x≠ y) 

EFFECT: On(b,y) ∧ Clear(x) ∧ ¬ On(b,x) ∧ ¬ Clear(y))

Action(MoveToTable(b,x)

PRECOND: On(b,x) ∧ Clear(b) ∧ Block(b) ∧ (b≠ x) 

EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬ On(b,x)) 

Spurious actions are possible: Move(B,C,C)
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Planning with state-space search

� Both forward and backward search possible

� Progression planners
� forward state-space search

� Consider the effect of all possible actions in a given state

� Regression planners 
� backward state-space search

� To achieve a goal, what must have been true in the 

previous state.
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Progression and regression
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Progression algorithm

� Formulation as state-space search problem:
� Initial state = initial state of the planning problem

� Literals not appearing are false

� Actions = those whose preconditions are satisfied

� Add positive effects, delete negative

� Goal test = does the state satisfy the goal

� Step cost = each action costs 1

� No functions … any graph search that is complete is a 
complete planning algorithm.

� Inefficient: (1) irrelevant action problem (2) good 
heuristic required for efficient search
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Regression algorithm

� How to determine predecessors?
� What  are the states from which applying a given action 
leads to the goal?

Goal state = At(C1, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)

Relevant action for first conjunct: Unload(C1,p,B)

Works only if pre-conditions are satisfied.

Previous state= In(C1, p) ∧ At(p, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)

Subgoal At(C1,B) should not be present in this state.

� Actions must not undo desired literals (consistent)

� Main advantage: only relevant actions are considered.
� Often much lower branching factor than forward search.
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Regression algorithm

� General process for predecessor construction
� Give a goal description G

� Let A be an action that is relevant and consistent

� The predecessors is as follows:

� Any positive effects of A that appear in G are deleted.

� Each precondition literal of A is added , unless it already appears.

� Any standard search algorithm can be added to perform 
the search.

� Termination when predecessor satisfied by initial state.
� In FO case, satisfaction might require a substitution.
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Heuristics for state-space search

� Neither progression or regression are very efficient 
without a good heuristic.
� How many actions are needed to achieve the goal?

� Exact solution is NP hard, find a good estimate 

� Two approaches to find admissible heuristic:
� The optimal solution to the relaxed problem.

� Remove all preconditions from actions

� The subgoal independence assumption:

The cost of solving a conjunction of subgoals is approximated by the 
sum of the costs of solving the subproblems independently.
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Partial-Order Planning (POP)

� Progression and regression planning are totally 

ordered plan search forms.
� They cannot take advantage of problem 
decomposition.

� Decisions must be made on how to sequence actions on 

all the subproblems

� Least commitment strategy:
� Delay choice during search
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Shoe example

Goal(RightShoeOn ∧ LeftShoeOn)

Init()

Action(RightShoe, PRECOND: RightSockOn

EFFECT: RightShoeOn)

Action(RightSock, PRECOND: 

EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn

EFFECT: LeftShoeOn)

Action(LeftSock, PRECOND: 

EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock, leftshoe
(2)rightsock, rightshoe
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Partial-order planning

� Any planning algorithm that can place two actions into a 

plan without which comes first is a POP.
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POP as a search problem

� States are (mostly unfinished) plans.
� The empty plan contains only start and finish actions.

� Each plan has 4 components:
� A set of actions (steps of the plan)

� A set of ordering constraints: A < B

� Cycles represent contradictions.

� A set of causal links

� The plan may not be extended by adding a new action C that 
conflicts with the causal link. (if the effect of C is ¬p and if C could 
come after A and before B)

� A set of open preconditions.

� If precondition is not achieved by action in the plan. 

A
p

 →  B
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POP as a search problem

� A plan is consistent iff there are no cycles in the ordering 

constraints and no conflicts with the causal links.

� A consistent plan with no open preconditions is a 

solution.

� A partial order plan is executed by repeatedly choosing 

any of the possible next actions.
� This flexibility is a benefit in non-cooperative 

environments.
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Solving POP

� Assume propositional planning problems:
� The initial plan contains Start and Finish, the 
ordering constraint Start < Finish, no causal links, 
all the preconditions in Finish are open.

� Successor function :

� picks one open precondition p on an action B and

� generates a successor plan for every possible consistent 

way of choosing action A that achieves p.

� Test goal
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Enforcing consistency

� When generating successor plan:
� The causal link A--p->B  and the ordering constraing
A < B is added to the plan.

� If A is new also add start < A and A < B to the plan

� Resolve conflicts between new causal link and all 
existing actions

� Resolve conflicts between action A (if new) and all 
existing causal links.
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Process summary

� Operators on partial plans
� Add link from existing plan to open precondition.

� Add a step to fulfill an open condition.

� Order one step w.r.t another to remove possible 
conflicts

� Gradually move from incomplete/vague plans to 
complete/correct plans

� Backtrack if an open condition is unachievable or 
if a conflict is unresolvable.
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Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare,trunk))

Goal(At(Spare,Axle))

Action(Remove(Spare,Trunk)

PRECOND: At(Spare,Trunk)

EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)

EFFECT: At(Spare,Axle) ∧ ¬Ar(Spare,Ground))

Action(LeaveOvernight

PRECOND:

EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk) ∧ ¬ At(Flat,Ground) 
∧ ¬ At(Flat,Axle) )



28

Solving the problem

� Intial plan: Start with EFFECTS and Finish with 

PRECOND.
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Solving the problem

� Intial plan: Start with EFFECTS and Finish with PRECOND.

� Pick an open precondition: At(Spare, Axle)

� Only PutOn(Spare, Axle) is applicable

� Add causal link: 

� Add constraint : PutOn(Spare, Axle) < Finish

PutOn(Spare, Axle)
At(Spare,Axle )

 →     Finish
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Solving the problem

� Pick an open precondition: At(Spare, Ground)

� Only Remove(Spare, Trunk) is applicable

� Add causal link: 

� Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

Re move(Spare,Trunk)
At(Spare,Ground )

 →     PutOn(Spare, Axle)
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Re move(Spare,Trunk)
At(Spare,Ground )

 →     PutOn(Spare, Axle)

Solving the problem

� Pick an open precondition: At(Spare, Ground)

� LeaveOverNight is applicable

� conflict: 

� To resolve, add constraint : LeaveOverNight < Remove(Spare, 
Trunk)
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Re move(Spare,Trunk)
At(Spare,Ground )

 →     PutOn(Spare, Axle)

Solving the problem

� Pick an open precondition: At(Spare, Ground)

� LeaveOverNight is applicable

� conflict: 

� To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)

� Add causal link:

LeaveOverNight
¬At(Spare,Ground )

 →      PutOn(Spare,Axle)
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Solving the problem

� Pick an open precondition: At(Spare, Trunk)

� Only Start is applicable

� Add causal link: 

� Conflict: of causal link with effect At(Spare,Trunk) in LeaveOverNight
� No re-ordering solution possible.

� backtrack

Start
At(Spare,Trunk)

 →     Re move(Spare,Trunk)
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Solving the problem

� Remove LeaveOverNight, Remove(Spare, Trunk) and causal 
links

� Repeat step with Remove(Spare,Trunk)

� Add also RemoveFlatAxle and finish
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Some details …

� What happens when a first-order representation that 
includes variables is used?
� Complicates the process of detecting and resolving 
conflicts.

� Can be resolved by introducing inequality 
constrainst.

� CSP’s most-constrained-variable constraint can be used 
for planning algorithms to select a PRECOND.
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Conclusion

� Planning is an area of great interest within AI

� Search for solution

� Constructively prove a existence of solution

� Biggest problem is the combinatorial explosion in states

� Efficient methods are under research

� E.g. divide-and-conquer


