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Outline
• Recap: unsupervised learning
• Clustering

– K-means clustering
– Soft clustering with EM
– Agglomerative clustering
– Picking the number of clusters
– Classification

• Dimensionality reduction
– PCA

• Practical examples
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Recap: Unsupervised Learning

4

Model {θ1, θ2, ..., θL}

Data D {x1,…,xN}
xi=(a1,a2,…,aM)T

x y

Clustering: y categorical

Dimensionality Reduction: 
x ∈ ℜM  ⇒ y ∈ ℜK, with K<M 
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Clustering
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Where Are the Clusters?
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• What is the shape of each cluster?
• How many clusters?
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Clustering
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The Clustering Problem

• Given a set of data samples x1,…,xN, 
• Assign the data to K clusters

– Partitioning the dataset
– Also called segmentation

• K may be given, or chosen automatically

• Techniques fall into:
– Combinatorial techniques: work directly on data
– Mixture modeling: Assume data is IID, and models underlying pdf
– Mode seeking: aka bump hunting

8
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Clustering Techniques

• We’ll focus on the following
– K-means 
– Gaussian Mixture modeling (Also called soft K-means)
– Hierarchical clustering (Agglomerative/divisive) clustering

• These techniques are used regularly, often as part of a much 
larger system that might include supervised learning 
– e.g. discretize continuous input to make classification easier
– e.g. Representing pdf for Bayes classifier

9
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K-Means

• Wonderfully simple algorithm
• K-means:

– Initialize cluster centers
– Repeat until done

• Assign each data point to nearest cluster center
• Replace each cluster center with the mean of the data points associated to it

10
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K-Means Concepts

• Let’s assume the data is 2-D, and was generated from K 
clusters 

• We’ll model the problem with K prototype vectors
– We’ll call these means, and you’ll see why

• We assign a data point x to a cluster based on distance
– Data point x is assigned to the closest prototype

11

y = arg min
k=1...K

Distance(x, mk)

Note, this is similar to nearest neighbor classification and 
regression methods, which we will come back to
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K-Means Concepts

• Let’s assume the data is 2-D, and was generated from K 
clusters 

• We’ll model the problem with K prototype vectors
– We’ll call these means, and you’ll see why

• We assign a data point x to a cluster based on distance
– Data point x is assigned to the closest prototype

12

y = arg min
k=1...K

Distance(x, mk)

Note, this is similar to nearest neighbor classification and 
regression methods, which we will come back to

How do we define distance?

Prototypes
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K-Means Update

• We update our prototypes based on the points that were 
assigned to it, but taking the average/centroid/mean

13

m
′

k =
1

Nk

∑

xi assigned to k

xi k = 1 . . . K
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K-Means Update

• We update our prototypes based on the points that were 
assigned to it, but taking the average/centroid/mean

14

m
′

k =
1

Nk

∑

xi assigned to k

xi k = 1 . . . K

Mean of points 
assigned to k

New prototype
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Example

15
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Example: Initialization

16

• Initialize cluster centers (randomly 
selecting data in this example)

• Assign to cluster centers based on 
nearest prototype mean

Estimated mean
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Example: 1 Iteration

17

• Update means based on average of 
points assigned to prototype
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Iteration 2
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Iteration 3
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Iteration 4

20
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Iteration 9

21
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Question Time

• How well does it fit the data? 

• When should we terminate? Will it always terminate?

• Does it always work?

• How do we tell how many clusters are there (ie. what is K)?

22
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How Well Does It Fit The Data?

• K-means is a local search technique for optimizing the 
distortion of the data

• Formally, K-means tries to optimize the within-point scatter

23

C =

∑

k

Nk

∑

yi=k

||xi − mk||
2

How does this change with each iteration?
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From Previous Example

24
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Does It Always Work?

• Unfortunately, no

25
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Does It Always Work?

26
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After 9 Iterations

27
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What Happened?

• K-means can get stuck in local optima
– Effectively, it will depend on the starting condition

• How can we “fix” this?

28
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What Happened?

• K-means can get stuck in local optima
– Effectively, it will depend on the starting condition

• How can we “fix” this?
– Use random restarts (remember local search?)
– Keep track of best solution so far

• K-means will converge
– May want to limit iterations though

29
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How Many Clusters?

30

True value of K
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K-Means Summary

• Practical algorithm, good to have in the tool box
• Implementation

– Need to run with random restarts
– Need to keep track of best solution found
– Need to provide (or estimate) K
– Can be slow on big datasets 

• Can use different distance metrics
– Part of algorithm design

• Speeding up K-means
– Faster nearest neighbor algorithms/data structures

31
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Hierarchical Methods

• Recall K-means
– Input = K, measure of dissimilarity (distances)
– Output = Cluster centers

• Hierarchical techniques avoid needing to specify K
– Input = Measure of dissimilarity (e.g. distances)
– Output = Hierarchical model of data similarity

• Output is a tree (dendogram)

32

All the data

C11 C12

C21 C22 C23 C24

C31 C32
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Divisive Methods

• Two types of hierarchical clustering:
– Divisive (top down), and agglomerative (bottom up)

• Hierarchical K-means is a divisive method
– Start with all the data in 1 cluster
– Split using “flat” K-means
– For each cluster, recursively split each cluster

• K is usually small
• Need to decide when to stop

33
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Hierarchical K-Means

34

K=2
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Hierarchical K-Means

35

K=2

All the data

C11 C12
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Hierarchical K-Means

36

K=3

All the data

C11 C12

C21 C22 C23 C24
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Hierarchical K-Means

37

K=3

All the data

C11 C12

C21 C22 C23 C24

C33 C34
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Agglomerative Techniques

• Work in reverse direction (bottom up)
• Given N data points and dissimilarity measure

– Start with all the data in separate classes
– Repeat N-1 times

• Find closest two groups and merge them

• How do we measure dissimilarity between groups?

38
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Agglomerative Clustering

• Define dissimilarity between two pairs of data d
• Distance between two groups G1 and G2

• Single linkage (SL)

• Complete linkage (CL)

• Group Average (GA)

39

dSL(G1, G2) = min
i∈G1, j∈G2

dij

dCL(G1, G2) = max
i∈G1, j∈G2

dij

dGA(G1, G2) =
1

NG1
NG2

∑

i∈G1

∑

j∈G2

dij
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Dissimilarity Measures

• If data is nicely clustered, particular choice doesn’t matter

• If data is not nicely clustered, you will get different clusters

40

Single Link Complete LinkGroup Average
More compact clustersLess compact clusters

(chaining)
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Probabilistic Clustering?

• K-Means/Agglomerative clustering is not probabilistic

• Is there a probabilistic version?
– Yes! Mixture modeling!
– We’ll focus on gaussian mixture modeling, or GMM

• Along the way we will also look at an important learning 
technique: Expectation Maximization (EM)

41
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Gaussian Mixture Modeling

• We have some M dimensional data x1,…,xN

• Let’s assume that the data is sampled from a set of K Gaussian 
distributions
– Each Gaussian will correspond to a cluster/class
– Distribution will be the result of mixing the Gaussians

• What is p(x|Model)?
• How can we estimate µk and Σk?

42
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Defining the Densities

• For a given cluster ck, density is:

• We assume cluster ck is selected p(ck) of the time, so

• M = (θ1,…, θK) = (p1,µ1,Σ1,…., pK,µK,ΣK), model parameters

• How can I estimate M given some data?

43

P (x|ck, µk, Σk) ∼ N(µk, Σk)

P (x|M) =
∑

k

P (x|ck, µk, Σk)p(ck) Class prior
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Hidden Information Problem

• Suppose I knew the data labels (ie. the cluster it came from)
– (x1,ck1), …., (xN,ckN)

• How could I estimate M?

44
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Full Information Problem

• Suppose I knew the data labels (ie. the cluster it came from)
– (x1,ck1), …., (xN,ckN)

• How could I estimate M?
– Use MLE!

45

P (ck) =
#D{ci = ck}

N
=

Nk

N

µk =
1

Nk

∑

D{ci=ck}

xi

Σk =
1

Nk − 1

∑

D{ci=ck}

(xi − µk)2
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Hidden Information Problem

• But we don’t know the labels ck!
– The labels are hidden

• How can we estimate this?
– Use the EM algorithm!

46
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Gaussian Mixture Models

• We can make some assumptions about Σk

• General: Σk ≠ Σk’  
– O(K2) parameters, for K clusters (M2+M+1 per cluster)

• Aligned: Σk = diag(σk12, σk22,…, σkM2) 
– O(K) parameters (M+M+1 per cluster)

• Spherical: Σk = σk2I
– O(1) parameters (M+1+1 per cluster)

47
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Gaussian Mixture Models

• Given data x1, x2, …, xN

• What is P(x1, x2, …, xN|c1,µ1,Σ1,…,cK,µK,ΣK)?

48
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Gaussian Mixture Models

• Given data x1, x2, …, xN

• What is P(x1, x2, …, xN|c1,µ1,Σ1,…,cK,µK,ΣK)?

• Assume data is independent:

• How do we estimate c1, µ1, Σ1, …?

49

P (x1, . . . , xN |c1, µ1,Σ1, . . .) =
∏

i

P (xi|c1, µ1,Σ1, . . .)
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Expectation Maximization

• Powerful algorithm from statistics
– Finds the MLE for parameters with latent (hidden) variables

• Repeat until done
– Expectation: 

• If we knew µk, Σk, we could easily estimate p(ck) (the hidden variables)

– Maximization:
• If we knew P(ck), we could estimate the parameters µk, Σk

50

[Dempster et al. 77]

Consider easier case of σ2I first
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Expectation Maximization

• Repeat until done
– Expectation: 

• If we knew µk, Σk, we could easily estimate p(ck) (the hidden variables)

– Maximization:
• If we knew P(ck), we could estimate the parameters µk, Σk

51

P (ck|xi, µ1, θ) =
P (xi|ck, θ)P (ck|θ)

P (xi|θ)

=
P (xi|ck, µk, σ2I)P (ck)

∑
j P (xi|cj , µj , σ2I)P (cj)

µ′

k =

∑
i
P (ck|xi, θ)xi∑
i
P (ck|xi, θ)
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What you should know
• Thoroughly understand:

– K-means, and be able to implement it
– Hierarchical clustering techniques
– Mixture models and EM
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Next …

• Next week
– More Gaussian Mixtures
– PCA 
– Back to classifiers (briefly)
– Review...


